

Volume 22, Issue I

# Designing Resilient Networks That Refuse to Fail

By: Kevin Mayo, CISSP, PMP

The networks we rely on today face constant stress from demands that weren't even on the horizon when these networks were designed several years (or decades) ago. From traffic spikes and distributed workloads to malicious threats and Al-driven demands, large-scale network infrastructure must now be ready to adapt, scale, and respond to unpredictability in real-time.

Network assurance—making sure your network performs as intended in any condition—once meant ensuring uptime. In today's world, the connections that power business operations depend on how well networks are designed not only for uptime but also for resilience, scalability, and security as demands continue to change.



### The New Definition of Network Assurance

It's time to think of network assurance as your competitive currency. With it, you can ensure reliable business performance, maintain customer trust, and accelerate innovation. Without assured network performance, you risk revenue loss, reputational damage, and service interruption.

Network assurance can no longer be separated from security or resilience, especially in distributed environments where resources, applications, workloads, and users are distributed globally across the enterprise, Cloud, and distributed across on-premises and hosted environments.

What defines network assurance in a connected world? Uptime plus much more:

- **Protection** against cyber threats, outages, and misconfigurations that can disrupt operations and expose sensitive data.
- **Predictable** service delivery so teams can anticipate changes, maintain consistency, and meet expectations.
- **Data integrity** to make sure sensitive information remains unaltered and can be trusted to deliver business outcomes.
- **Redundancy** at every layer, allowing for instant failover and uninterrupted service even when some parts of the network go offline.
- **High performance** across distributed and dynamic workloads, with the ability to scale to support demands without latency or degradation.

• Overall Equipment Effectiveness or OEE = Availability X Performance X Quality. A Performance Assured Network helps deliver "world class" OEE that is 85% or better by minimizing downtime losses, reducing micro-stoppages and delays, and losses due to defects, scrap, rejects, and rework.

#### 7 Pillars of Network Assurance

Network assurance doesn't happen by accident. It's built by bringing the best-practice network architectures and business operational practices together.

## 1. Network topology

As enterprise IT environments become more distributed, traditional three-tiered network designs (Core, Distribution, and Access) will no longer be sufficient.

Traditional and out-of-date network architectures assume stable, predictable traffic patterns. Today's modern data-driven businesses are driven by the constant change of bursty user and network traffic, shifting workloads, and the rise of bandwidth-intensive applications.

To support this shift, many organizations are adopting topologies like fiber-based mesh networks. By connecting devices and nodes in multiple paths, mesh designs allow for intelligent, efficient routing and ensure continuous connectivity despite disruptions or unexpected traffic spikes. To further strengthen network performance, these types of Ethernet fabrics can leverage Shortest Path Bridging (SPB) or Transparent Interconnection of Lots of Links (TRILL). These protocols enable all available links to be active simultaneously with multiple, equal-cost paths, so traffic can be reroutedquickly around failures and congestion (more about this in a bit). With advanced networking foundations in place, organizations can move toward software-defined networking (SDN) and network functions virtualization (NFV).

SDN separates network management from underlying hardware, making it possible to adjust policies, routing, and resource allocation centrally and in real-time. This turns your network into a single, flexible resource pool that can meet rapidly evolving business needs.

NFV extends these principles by shifting core network functions, such as routing, firewalling, and load balancing, onto generic, centrally managed servers. This reduces dependency on specialized and proprietary hardware, simplifying support and speeding up deployment and troubleshooting, which lowers operational costs while delivering greater adaptability.

## 2. Redundancy and failover

As organizations adopt distributed IT architecture, the potential for failure points naturally increases. That's why it's essential to build redundancy and backup strategies into every stage of the network, as mentioned above.

Redundancy means building a safety net around potential points of failure. By anticipating where a single point of failure could disrupt operations, and then eliminating it through multiple data paths, switching options, or protocols that maintain continuous communication, you can ensure consistent service and rapid recovery.

Design your network with redundant paths and systems that can support automatic rerouting and continuous uptime when hardware failures, traffic surges, or unexpected outages happen.

## 3. Reliable physical infrastructure

Reliability starts at the foundation. In other words, network resilience rests on the quality and suitability of your physical layer. It can transform your infrastructure into an asset instead of a vulnerability.

Every component contributes to the network's ability to sustain uptime and meet objectives. High-performance solutions that are tailored for specific applications and then built and deployed in alignment with rigorous quality standards, plus validated through proper testing, deliver less signal loss and greater operational confidence.

Proper installation matters, too. Improper installation can lead to performance problems and unexpected downtime. Human-caused vulnerabilities by incorrect configuration also lead to operational efficiency loss while introducing new attack vectors for cyber threats. Following recommended installation practices ensures that your network performs as intended operationally and securely.

## 4. Integrated security

Security should never be an afterthought. Instead, it should be built into your network at the design phase and at the blueprint level to fully deliver a zero-trust architecture protecting your organization's business operations and business reputation.

Integrated solutions like network access control (NAC) can identify and sort mission-critical devices (surveillance cameras, wireless access points, and employee workstations, for example) into corresponding groups and VLANs based on predefined rules based on security policy.

Ensuring that only approved and IT-authorized devices are allowed on the network protects the organization from the threats of shadow IT while helping deliver compliance by making sure that all devices are properly patched and protected.

#### 5. Continuous visibility and monitoring

Intelligent networks must have the ability to identify anomalies in network operational behavior. When unexpected network events occur, today's software-defined network has the ability to detect, adapt, and even respond to unexpected network events. Today's network requires advanced anomalous detection capabilities and can respond automatically, not relying on human operators to determine a response.

Modern monitoring platforms give IT teams live insights into performance, usage, and anomalies, helping them spot risks and bottlenecks before they escalate. Automated monitoring can not only track what's happening but also use analytics to predict potential problems and guide proactive responses.

By combining network-wide transparency with smart alerts and analytics, you can identify unauthorized access attempts, optimize bandwidth, and maintain reliability across distributed environments, all while reducing downtime and improving user experience.

## 6. Simplicity and standardization

A standardized, simplified network design reduces the variables that cause downtime and makes management predictable. It's also easier to manage, automate, and document changes at scale.

When possible, keep network designs simple and standardized to

- Reduce points of failure
- Simplify troubleshooting, patching, and upgrades
- Minimize misconfigurations
- Speed up onboarding for new IT team members
- Streamline maintenance
- Deliver more reliable performance
- Be flexible by using open and widely adopted industry standards rather than being boxed in by proprietary and difficult-to-integrate approaches.

## 7. Scalability and future proofing

Scalability means designing with tomorrow's bandwidth, latency, and integration requirements in mind, even if they aren't a big priority today. It's critical to benchmark where your network is today, define where you need to go, and plan upgrades that minimize disruption.

Your network should support growth without compromise, supporting every connected device while maintaining the same performance and protection.

You can accomplish this by anticipating and planning for increased bandwidth, new connected devices, and evolving protocols, so your network doesn't become a bottleneck over time.

# **Designing for What Comes Next**

Notroi

Building network assurance into every layer ensures predictable performance, better recovery, and strong security.

For CSPs and enterprise IT teams, the path forward involves designing networks that anticipate problems, recover in real-time, and evolve with new demands—despite constant disruption—to ensure dependable connectivity and help you connect to what's possible.