
N
ot

 fo
r d

ist
rib

uti
on

 o
r r

ep
ro

du
cti

on
.

© 2015, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges regarding the use of this information. Any

unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution outside of www.pipelinepub.com.

To obtain permission to reproduce or distribute this document contact sales@pipelinepub.com for information about Reprint Services.

www.pipelinepub.com Volume 12, Issue 5

 Ask the vast majority of information technology
professionals today if it is possible to completely secure
a computing system against cybercrime and the answer
you will get is a resounding “no.” Through a series of
events too long and convoluted to address in this article,
we have established a global computing infrastructure
that is fundamentally incapable of protecting itself,
creating both a playground and a candy store for
cybercriminals.

Our current global computing infrastructure is based
on technology first conceived almost forty years ago,
long before the global network of billions of computers
was created to manage our banking, communications,
defense, entertainment … even the everyday mundane
facts of our lives, like the Instagram of the yogurt
parfait we had for breakfast. The open communication
protocols of the
Internet were
designed to insure
that data can be
transferred and
shared under the
most adverse of
circumstances.
The computer
architectures in
vogue today are
the great, great
grandchildren of
the original IBM PC,
which was best secured by locking your office door at
night. These technologies were simply not designed with
the forethought of their then far future applications in
secure and trusted computing.

We are now faced with the consequences of this
legacy – the loss of billions of dollars annually due to
cybercrime and the social and political ramifications
of not being able to secure knowledge that we would
prefer to keep private. To date, we have attempted
to address this problem by creating firewalls, scatter-
shot use of cryptography, anti-virus software, intrusion
detection systems, two-phase authentication and a
variety of other methods attempting to Band-Aid our
flawed infrastructure. What is needed is a fundamental
overhaul of the architecture of our computing
infrastructure and the introduction of better security
from the ground up. What is needed is tamper-proof
computing[1].

Search the web for information related to the term
“tamper-proof computing” and you will find plenty
of material on tamper-evident and tamper-resistant
computing, but you will find very little on tamper-proof
computing. So, perhaps we should best start with a
definition of what exactly is tamper-proof computing.
To be tamper-proof, the computing system must not

permit itself to be
altered while running
in a production
environment through
means readily
available to those
with access to
the system. That
requires that it
have the following
characteristics:

1.	 hardware
comprising the
computing system

cannot be added, changed or removed,

2.	 software cannot be added, changed or deleted by a
single individual,

3.	 software cannot be injected and executed from a
remote source or via data,

4.	 proprietary “secrets” such as private keys and
checksum values are undiscoverable,

5.	 hardware and software can always be verified to be
known and trusted, and

6.	 attempts to compromise the system are prevented
or result in protective actions.

Tamper-proof Computing
By Chris Piedmonte

http://www.pipelinepub.com
mailto:sales@pipelinepub.com
http://www.pipelinepub.com
http://www.theedison.com/index.php/articles/entry/22-ultimately-secure-computing
http://www.theedison.com/index.php/articles/entry/22-ultimately-secure-computing
http://pipeline.pubspoke.com/click/ad/195/

© 2015, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges regarding the use of this information. Any

unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution outside of www.pipelinepub.com.

To obtain permission to reproduce or distribute this document contact sales@pipelinepub.com for information about Reprint Services.

N
ot

 fo
r d

ist
rib

uti
on

 o
r r

ep
ro

du
cti

on
.

These six characteristics must be enforced from the
time power is applied to the computing system until it is
shut down and decommissioned from production use.
To accomplish this requires new hardware and software
only now becoming available. Leading the way toward
the future of tamper-proof computing are innovative
computer technology companies like Freescale
Semiconductor (soon to be part of NXP).

System-on-a chip

Freescale has been working for many years to develop
their Trust Architecture now available in their QorIQ
(pronounced core-IQ) and Layerscape line of system-on-
a-chip (SoC) products (see Figure 1). These SoCs are
available in both POWER and ARM compatible versions
and are designed to run with exceptional performance
and compatibility within a modern computing
infrastructure.

When combined with operating systems and tools
designed specifically to take advantage of the Freescale
Trust
Architecture,
such as the
Suvola LINUX
Distribution,
we now have
the basis for
tamper-proof
computing,
or what
Freescale
calls a
trustworthy
system.
Freescale
defines a
trustworthy system as a system which does what its
stakeholders expect it to do, resisting attackers with
both remote and physical access, else it fails safe.
Using the Freescale Trust Architecture, each of the
six requirements for tamper-proof computing can be
achieved. Let’s revisit each of those six requirements
and examine how a tamper-proof platform developed on
top of the Freescale Trust Architecture achieves them.

Hardware cannot be added, changed or removed:
During the booting up of the system, a secure boot
process can detect unauthorized modifications to the
system configuration, such as device trees or hardware
certificates, and prevent the continuation of the boot
process. Attempts to add, remove or substitute
hardware prior to booting are therefore prevented. After
the system is up and running, the external attachment

of other devices, via USB, Ethernet or other interfaces
is also detectable and these devices can be ignored or
disabled to prevent the unauthorized transfer of data to
or from these devices.

Software cannot be added, changed or deleted (by a
single individual): To add, change or delete software
requires that a user have access and permission
within the computing file system. The Suvola LINUX

distribution includes
a file system that
requires a two-party
authentication system
to install executable
code of any type,
thereby preventing
the modification of
executable software
by a single individual.
Further, all software
authorized to run
on a tamper-proof
computing platform
must be signed by the
manufacturer (author),

the user of the platform (stakeholder in Freescale
terminology), and keyed to a secret within the SoC to
guarantee its authenticity. The algorithms for software
installation are known only to the Suvola software
installation toolset and are rotated frequently to provide
additional security.

Software cannot be injected from a remote source or via
data: The computing platform provides for a run-time
integrity checker, which can determine if the software
about to be submitted to a CPU for execution is known
to the system or not. Unknown software is simply not
permitted to execute. Known software must match a
series of signature and validation checks to ensure
that it has not been tampered with prior to execution.
While in memory, code is continuously monitored to
ensure that it has not been tampered with since it was
originally loaded. The SoC can also be configured (by a

To be tamper-proof, the computing
system must not permit itself to be
altered while running in a production
environment through means readily
available to those with access to the
system.

http://pipeline.pubspoke.com/click/ad/195/

© 2015, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges regarding the use of this information. Any

unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution outside of www.pipelinepub.com.

To obtain permission to reproduce or distribute this document contact sales@pipelinepub.com for information about Reprint Services.

N
ot

 fo
r d

ist
rib

uti
on

 o
r r

ep
ro

du
cti

on
.

permanent fusing mechanism within the SoC) to disable
debug interrupts, physically partition cores and memory,
and close other “back doors” that can be used to alter
code or execution when in production by a sophisticated
attacker.

Secrets are undiscoverable: The Freescale Trust
Architecture provides a write-only storage area that
is only accessible by components of the SoC Trust
Architecture, such as the hardware-based cryptography
and boot subsystems. This storage area is used to
secure cryptography private keys and other “secrets” so
that they cannot be discovered (short of destroying the
chip and attempting to read the molecular state of the
storage area via scanning electron microscope), but are
readily usable by the SoC itself.

Hardware and software can always be verified: Given
that the configuration of the hardware and software
are known to the SoC and verifiable via its secrets,
the system is capable of continuously monitoring both
hardware and software for unauthorized modifications.
This provides a means of ensuring that the hardware and
software comprising the system has not been tampered
with.

Attempts to compromise the system are prevented:
Other advanced features designed to protect the
secrets of the system include the ability to zero-out
all secrets if the computing platform is physically
tampered with, operated out of voltage, temperature or
AC power frequency ranges in attempts to compromise
the SoC. The cryptographic subsystem also provides
for timing equalization to prevent attempts to “guess”
the algorithms via careful analysis of cryptographic
processing times.

But how do we know that a system’s built around these
six tenants really is tamper-proof? As always, proving a
negative is really not readily possible. It’s the equivalent
of trying to prove that the airbags in your car will go off
if you drive into a brick wall. We all expect that they will,
but how do we prove that short of totaling our new Tesla
Model S? The same is true of tamper-proof computing.
We can’t prove it is tamper-proof, only prove that it is not
if and when at some point in the future someone figures
out how to get around the six tenants we’ve set out
herein. But do we really require proof to use the clearly
advantageous capabilities of a tamper-proof computing
system? Clearly, as with the air bags in our modern
vehicles, it’s better to have and trust that they will work,
rather than not have them at all. As more and more
tamper-proof computing platforms are deployed, time
will surely indicate that having them in place is better
than not, and that the value they deliver in thwarting

cybercrime is both measurable and significant.

[1] Most of the major publicly known breaches (Target,
Home Depot, etc.) could have been prevented had this
technology existed, as they all required that the systems
be tampered with to achieve the criminal objective.

As with the air bags in our
modern vehicles, it’s better to
have and trust that they will
work, rather than not have
them at all.

