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 Ask the vast majority of information technology 
professionals today if it is possible to completely secure 
a computing system against cybercrime and the answer 
you will get is a resounding “no.”  Through a series of 
events too long and convoluted to address in this article, 
we have established a global computing infrastructure 
that is fundamentally incapable of protecting itself, 
creating both a playground and a candy store for 
cybercriminals.

Our current global computing infrastructure is based 
on technology first conceived almost forty years ago, 
long before the global network of billions of computers 
was created to manage our banking, communications, 
defense, entertainment … even the everyday mundane 
facts of our lives, like the Instagram of the yogurt 
parfait we had for breakfast.  The open communication 
protocols of the 
Internet were 
designed to insure 
that data can be 
transferred and 
shared under the 
most adverse of 
circumstances.  
The computer 
architectures in 
vogue today are 
the great, great 
grandchildren of 
the original IBM PC, 
which was best secured by locking your office door at 
night.  These technologies were simply not designed with 
the forethought of their then far future applications in 
secure and trusted computing. 

We are now faced with the consequences of this 
legacy – the loss of billions of dollars annually due to 
cybercrime and the social and political ramifications 
of not being able to secure knowledge that we would 
prefer to keep private.  To date, we have attempted 
to address this problem by creating firewalls, scatter-
shot use of cryptography, anti-virus software, intrusion 
detection systems, two-phase authentication and a 
variety of other methods attempting to Band-Aid our 
flawed infrastructure.  What is needed is a fundamental 
overhaul of the architecture of our computing 
infrastructure and the introduction of better security 
from the ground up.  What is needed is tamper-proof 
computing[1]. 

Search the web for information related to the term 
“tamper-proof computing” and you will find plenty 
of material on tamper-evident and tamper-resistant 
computing, but you will find very little on tamper-proof 
computing.  So, perhaps we should best start with a 
definition of what exactly is tamper-proof computing.  
To be tamper-proof, the computing system must not 

permit itself to be 
altered while running 
in a production 
environment through 
means readily 
available to those 
with access to 
the system.  That 
requires that it 
have the following 
characteristics:

1.	 hardware 
comprising the 
computing system 

cannot be added, changed or removed,

2.	 software cannot be added, changed or deleted by a 
single individual,

3.	 software cannot be injected and executed from a 
remote source or via data,

4.	 proprietary “secrets” such as private keys and 
checksum values are undiscoverable,

5.	 hardware and software can always be verified to be 
known and trusted, and

6.	 attempts to compromise the system are prevented 
or result in protective actions.
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These six characteristics must be enforced from the 
time power is applied to the computing system until it is 
shut down and decommissioned from production use. 
To accomplish this requires new hardware and software 
only now becoming available.  Leading the way toward 
the future of tamper-proof computing are innovative 
computer technology companies like Freescale 
Semiconductor (soon to be part of NXP).

System-on-a chip

Freescale has been working for many years to develop 
their Trust Architecture now available in their QorIQ 
(pronounced core-IQ) and Layerscape line of system-on-
a-chip (SoC) products (see Figure 1).  These SoCs are 
available in both POWER and ARM compatible versions 
and are designed to run with exceptional performance 
and compatibility within a modern computing 
infrastructure. 

When combined with operating systems and tools 
designed specifically to take advantage of the Freescale 
Trust 
Architecture, 
such as the 
Suvola LINUX 
Distribution, 
we now have 
the basis for 
tamper-proof 
computing, 
or what 
Freescale 
calls a 
trustworthy 
system.  
Freescale 
defines a 
trustworthy system as a system which does what its 
stakeholders expect it to do, resisting attackers with 
both remote and physical access, else it fails safe.  
Using the Freescale Trust Architecture, each of the 
six requirements for tamper-proof computing can be 
achieved. Let’s revisit each of those six requirements 
and examine how a tamper-proof platform developed on 
top of the Freescale Trust Architecture achieves them.

Hardware cannot be added, changed or removed: 
During the booting up of the system, a secure boot 
process can detect unauthorized modifications to the 
system configuration, such as device trees or hardware 
certificates, and prevent the continuation of the boot 
process.  Attempts to add, remove or substitute 
hardware prior to booting are therefore prevented.  After 
the system is up and running, the external attachment 

of other devices, via USB, Ethernet or other interfaces 
is also detectable and these devices can be ignored or 
disabled to prevent the unauthorized transfer of data to 
or from these devices.

Software cannot be added, changed or deleted (by a 
single individual): To add, change or delete software 
requires that a user have access and permission 
within the computing file system.  The Suvola LINUX 

distribution includes 
a file system that 
requires a two-party 
authentication system 
to install executable 
code of any type, 
thereby preventing 
the modification of 
executable software 
by a single individual.  
Further, all software 
authorized to run 
on a tamper-proof 
computing platform 
must be signed by the 
manufacturer (author), 

the user of the platform (stakeholder in Freescale 
terminology), and keyed to a secret within the SoC to 
guarantee its authenticity.  The algorithms for software 
installation are known only to the Suvola software 
installation toolset and are rotated frequently to provide 
additional security.

Software cannot be injected from a remote source or via 
data: The computing platform provides for a run-time 
integrity checker, which can determine if the software 
about to be submitted to a CPU for execution is known 
to the system or not.  Unknown software is simply not 
permitted to execute. Known software must match a 
series of signature and validation checks to ensure 
that it has not been tampered with prior to execution. 
While in memory, code is continuously monitored to 
ensure that it has not been tampered with since it was 
originally loaded.  The SoC can also be configured (by a 

To be tamper-proof, the computing 
system must not permit itself to be 
altered while running in a production 
environment through means readily 
available to those with access to the 
system. 

http://pipeline.pubspoke.com/click/ad/195/


© 2015, All information contained herein is the sole property of Pipeline Publishing, LLC. Pipeline Publishing LLC reserves all rights and privileges regarding the use of this information. Any 

unauthorized use, such as distributing, copying, modifying, or reprinting, is not permitted. This document is not intended for reproduction or distribution outside of www.pipelinepub.com. 

To obtain permission to reproduce or distribute this document contact sales@pipelinepub.com for information about Reprint Services.

N
ot

 fo
r d

ist
rib

uti
on

 o
r r

ep
ro

du
cti

on
.

permanent fusing mechanism within the SoC) to disable 
debug interrupts, physically partition cores and memory, 
and close other “back doors” that can be used to alter 
code or execution when in production by a sophisticated 
attacker.

Secrets are undiscoverable: The Freescale Trust 
Architecture provides a write-only storage area that 
is only accessible by components of the SoC Trust 
Architecture, such as the hardware-based cryptography 
and boot subsystems.  This storage area is used to 
secure cryptography private keys and other “secrets” so 
that they cannot be discovered (short of destroying the 
chip and attempting to read the molecular state of the 
storage area via scanning electron microscope), but are 
readily usable by the SoC itself. 

Hardware and software can always be verified: Given 
that the configuration of the hardware and software 
are known to the SoC and verifiable via its secrets, 
the system is capable of continuously monitoring both 
hardware and software for unauthorized modifications.  
This provides a means of ensuring that the hardware and 
software comprising the system has not been tampered 
with.

Attempts to compromise the system are prevented: 
Other advanced features designed to protect the 
secrets of the system include the ability to zero-out 
all secrets if the computing platform is physically 
tampered with, operated out of voltage, temperature or 
AC power frequency ranges in attempts to compromise 
the SoC.  The cryptographic subsystem also provides 
for timing equalization to prevent attempts to “guess” 
the algorithms via careful analysis of cryptographic 
processing times.

But how do we know that a system’s built around these 
six tenants really is tamper-proof?  As always, proving a 
negative is really not readily possible.  It’s the equivalent 
of trying to prove that the airbags in your car will go off 
if you drive into a brick wall.  We all expect that they will, 
but how do we prove that short of totaling our new Tesla 
Model S?  The same is true of tamper-proof computing.  
We can’t prove it is tamper-proof, only prove that it is not 
if and when at some point in the future someone figures 
out how to get around the six tenants we’ve set out 
herein.  But do we really require proof to use the clearly 
advantageous capabilities of a tamper-proof computing 
system?  Clearly, as with the air bags in our modern 
vehicles, it’s better to have and trust that they will work, 
rather than not have them at all.  As more and more 
tamper-proof computing platforms are deployed, time 
will surely indicate that having them in place is better 
than not, and that the value they deliver in thwarting 

cybercrime is both measurable and significant.

[1] Most of the major publicly known breaches (Target, 
Home Depot, etc.) could have been prevented had this 
technology existed, as they all required that the systems 
be tampered with to achieve the criminal objective.

As with the air bags in our 
modern vehicles, it’s better to 
have and trust that they will 
work, rather than not have 
them at all. 


